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 Major difference btw time series and data sets discussed before (from a purely 
statistical point of view): temporally consecutive measurements – usually highly 
dependent
 Violating the assumption of identically and independently distributed 

observations
 iid assumption: most of conventional statistical inference relies on

 Independency assumption
 Not only violated in time series but also in a number of other common test 

situations
 The class of mixed models

 Combine fixed and random effects  suited for both nested and longitudinal (i.e., time 
series) data

 The assumption of independent observations – given up
 In the context of neuroscience

 Dependent and nested data frequently occur (other than time series)
 Recordings from multiple neurons, nested within animals, nested within treatment groups 
 introduce dependency
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 Mixed models
 Much more flexible (parameterized) forms for the involved 

covariance matrices  account for dependency
 Regression model
 A full covariance matrix for the error terms (instead of the scalar forms) 

captures some of the correlations among observations
 ML estimator for parameter 𝛃𝛃: �𝛃𝛃 = 𝐗𝐗𝑇𝑇𝚺𝚺−1𝐗𝐗 −1𝐗𝐗𝑇𝑇𝚺𝚺−1𝐲𝐲

 𝚺𝚺 – a full covariance structure; under the multivariate normal model
 Dependency  the likelihood – does not factor into the individual 

observations anymore
 Still easily obtained with the observations jointly multivariate normal

 Estimation of the covariance matrices: generally less straightforward
 In general, no analytical solution for mixed models  numerical 

techniques
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 Time series – supposedly generated by some underlying dynamical 
system (a more general, scientific point of view)
 Recovered from the data
 Encapsulates the essence of formal understanding of the underlying 

process
 Assumption: this dynamical (time series) model captures all the 

dependencies among consecutive data points  the residuals from 
this model – independent again & hence conventional asymptotic test 
statistics – more ore less directly revoked

 The simplest class of such time series models: linear
 (sets of) linear difference or differential equations
 Pretty much the same mathematical layout as conventional multiple or 

multivariate regression models
 Output variables – regressed on time-lagged versions of their own 

(instead of on a different (independent) set of observations) catch the 
correlations among temporally consecutive measurements
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 In many domain of neuroscience
 Time series models: the most important class of statistical models
 fMRI recordings, optical imaging, multiple-/single-unit recordings, 

EEG or MEG signals: inherently as time series generated by a 
dynamical system (the brain) with stronger or weaker temporal 
dependencies among consecutive measurements (depending on the 
type of signals recorded)

 In behavioral data
 Time series – frequently occur
 Ex:
 A learning process that develops across trials
 The impact of cyclic (e.g., hormonal) variations on behavioral performance
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 Autocorrelation
 m/c tools for descriptive characterization of (the linear properties of) 

time series: autocorrelation function & the power spectrum 
 A univariate time series 𝑥𝑥𝑡𝑡
 Variable 𝑥𝑥 sampled at discrete times 𝑡𝑡 (cf. 𝑥𝑥 𝑡𝑡 in case of a continuous time 

function)
 Auto-covariance (acov) function:

 The conventional covariance applied to time-lagged versions of 𝑥𝑥𝑡𝑡
 𝜇𝜇𝑡𝑡 and 𝜇𝜇𝑡𝑡+Δ𝑡𝑡: the means at times 𝑡𝑡 and 𝑡𝑡 + Δ𝑡𝑡, respectively

 Autocorrelation (acorr):

 Dividing the auto-covariance by the product of s.d.
 An ensemble of time series drawn from the same underlying process  the 

expectancies and (co-)variances at specific times 𝑡𝑡
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 Autocorrelation
 A single observed time series 𝑥𝑥𝑡𝑡 (𝑡𝑡 =1,…,T)
 Assumptions of stationarity and ergodicity �𝛾𝛾 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡+Δ𝑡𝑡 and �𝜌𝜌 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡+Δ𝑡𝑡
 Estimates across samples – replaced by estimates across time

 Mean & variance – the same across all 𝑡𝑡 𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡+Δ𝑡𝑡 = 𝜇𝜇 and 𝜎𝜎𝑡𝑡2 =
𝜎𝜎𝑡𝑡+Δ𝑡𝑡2 = 𝜎𝜎2

 𝜇𝜇 and 𝜎𝜎2 – replaced by sample estimates �̅�𝑥 and 𝑠𝑠𝑥𝑥2 respectively
 acorr and acov functions – depend on time lag Δ𝑡𝑡 only

 𝛾𝛾 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡+Δ𝑡𝑡 = 𝛾𝛾(Δ𝑡𝑡) and 𝜌𝜌 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡+Δ𝑡𝑡 = 𝜌𝜌(Δ𝑡𝑡) = 𝛾𝛾(Δ𝑡𝑡)/𝛾𝛾(0)
 Any time lag Δ𝑡𝑡 ≠ 0 – cut off Δ𝑡𝑡 values at one end or the other of the 

empirical time series sample
o The product of s.d. in the denominator – computed across the first 

1,… 𝑇𝑇 − Δ𝑡𝑡 and the last Δ𝑡𝑡+1,…, 𝑇𝑇 values  usually ignored & 
irrelevant for sufficiently long time series

o Likewise for the means
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 Autocorrelation
 The acorr function (= 𝜌𝜌 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡+Δ𝑡𝑡 )

 The dependencies among temporally neighboring values along a time series & how quickly 
with time these dependencies die out (i.e., the acorr drops to zero as Δ𝑡𝑡 increases)

 An important tool to characterize some of the temporal structure in a time series
 Bounded within in [-1, +1] (just as the standard Pearson correlation, by definition)
 Symmetrical: 𝜌𝜌 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡+Δ𝑡𝑡 = 𝜌𝜌 𝑥𝑥𝑡𝑡+Δ𝑡𝑡, 𝑥𝑥𝑡𝑡 or 𝜌𝜌 Δ𝑡𝑡 = 𝜌𝜌(−Δ𝑡𝑡) in the stationary case
 iid random numbers 𝑥𝑥𝑡𝑡 and some basic conditions  asymptotically �𝜌𝜌(Δ𝑡𝑡) ~ 

N(−1/T,1/T) (or N(0,1/T) for large T ?)
o Used to establish confidence bounds or check for significance of the autocorrelations

 Application on different types of neural time series (Fig. 7.1)
 Series of interspike intervals (obtained from single-unit recordings) & fMRI BOLD signal 

traces  quite different autocorrelative properties in different types of data
 Some important properties of the underlying system

 Oscillations: periodic increases and decreases in the autocorrelation
 “long-memory” properties: a very slow decay of the autocorrelation
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Fig. 7.1 Illustration of sample autocorrelation functions (left), power spectra (center), and return plots (right) on 
interspike interval (ISI) series (top row; from rat prefrontal cortex) and BOLD signals (bottom row) from human 
fMRI recordings. For the spike data, the power spectrum was computed on the original binned (at 10 ms) spike 
trains, not the ISI series. Spike train data recorded by Christopher Lapish, Indiana University Purdue University 
Indianapolis (see also Lapish et al. 2008; Balaguer-Ballester et al. 2011). Human fMRI recordings obtained by 
Florian Ba¨hner, Central Institute for Mental Health Mannheim (Ba¨hner et al. 2015). MATL7_1
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 Power Spectrum
 Wiener-Khinchin theorem
 Weak-sense stationary & certain conditions  a 1:1 relationship btw the 

acorr function and the power spectrum (or spectral density) of a time series
 Decomposition into a weighted sum of harmonic oscillations (i.e., 

pure sine and cosine functions)
 The frequency domain representation of a periodic function 𝑥𝑥(𝑡𝑡): 𝑥𝑥 𝑡𝑡 =
𝑥𝑥(𝑡𝑡 + Δ𝑡𝑡) for some fixed Δ𝑡𝑡 and all 𝑡𝑡

 Approximation by a series of frequencies (Fourier series):

 𝜔𝜔(= 2𝜋𝜋𝑓𝑓) = angular frequency; 𝑓𝑓(= ⁄1 Δ𝑡𝑡)= the oscillation frequency 
in Hz (Δ𝑡𝑡 =oscillation period)

 Dirichlet’s condition: Fourier series – known to converge to 𝑥𝑥(𝑡𝑡)
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 Power Spectrum

 Plots the coefficients ⁄𝑎𝑎𝑘𝑘2 + 𝑏𝑏𝑘𝑘2 2 against frequency  𝜔𝜔 or 𝑓𝑓
 the energy contribution of each frequency 𝑓𝑓 to the “total 
energy” in the signal
 The 1st coefficient ⁄𝑎𝑎0 2: the mean of 𝑥𝑥(𝑡𝑡) across one oscillation period 
Δ𝑡𝑡

 The power ⁄𝑎𝑎𝑘𝑘2 + 𝑏𝑏𝑘𝑘2 2 of the kth frequency component = the amount 
of variance in the signal explained by that frequency

 An estimate of these functions – obtained by fast Fourier transform (FFT) 
algorithm
 Fourier transformation of 𝑥𝑥(𝑡𝑡) – only captures its linear time series 

properties (as fully specified through the acorr function)
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 Power Spectrum
 Neuroscience

 The frequency domain representation of neurophysiological signals like LFP or EEG –
of uttermost importance for characterizing oscillatory neural processes in different 
frequency bands
 Ex: theta (~3 – 7 Hz) or gamma (~30 – 80 Hz) band
 Oscillations: a pivotal role in neural information processing

o Means for synchronizing the activity and information transfer btw distant brain 
areas

o A carrier signal for phase codes of external events or internal representations
 Ex1: stimulus-specific increases in the power within the gamma or theta frequency 

band
 In response to external stimuli (e.g., in the bee olfactory system in response to 

biologically relevant odors)
 In conjunction with the internal active maintenance of memory items (e.g., during 

the delay phase of a working memory task)
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 Power Spectrum
 Neuroscience
 Ex2: neurons in the hippocampus coding for specific places in an 

environment – align their spiking activity with a specific phase of the 
hippocampal theta rhythm
 While the animal moves through the neuron’s preferred place field thus 

encoding environmental information in the relative phase (a phase code) 
w.r.t an underlying oscillation

 Ex3: neurons in visual cortex
 Encode and maintain information about visual patterns in working 

memory – by aligning their spike phase with an underlying theta 
oscillation during the delay period

 In a stimulus-specific manner with the phase relationship breaking down 
for items not preferred by the recorded cell

 Ex4: the hippocampus and prefrontal cortex phase-lock during working 
memory tasks
 During the choice epochs where the animal chooses the response in a two-

arm maze based on previous choices or stimuli
 Oscillations – help to organize the information transfer among areas
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 White Noise
 The simplest form of a time series process 𝑥𝑥𝑡𝑡 : a pure random 

process with zero mean and fixed variance but no temporal 
correlations at all
 E 𝑥𝑥𝑡𝑡 = 0 for all 𝑡𝑡

 𝐸𝐸 𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡′ = �𝜎𝜎
2 for t = t′

0 otherwise
 Called white noise processes W(0, 𝜎𝜎2) (not necessarily Gaussian)

 No distinguished frequency in the frequency domain representation 
completely flat power spectrum

 No specific “color”  a uniform mixture of all possible colors, giving 
white

 The unique setup of autocorrelation coefficients at different time lags 
Δ𝑡𝑡 ≠ 0 for the oscillatory properties of the time series (in accordance 
with the Wiener-Khinchin theorem)
o If they are all zero  no (linear) oscillations
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 White Noise
 Most of the statistical inference on time series

 Assumption: the residuals from a model – form a white noise sequence
 Wold decomposition theorem:

 Each stationary discrete-time process 𝑥𝑥𝑡𝑡 = 𝑧𝑧𝑡𝑡 + 𝜂𝜂𝑡𝑡 – split into a systemic (purely 
deterministic) part 𝑧𝑧𝑡𝑡 and an uncorrelated purely stochastic process 𝜂𝜂𝑡𝑡 =
∑𝑘𝑘=0∞ 𝑏𝑏𝑘𝑘𝜀𝜀𝑡𝑡−𝑘𝑘 with 𝜀𝜀𝑡𝑡~ W(0, 𝜎𝜎2)

 Gaussian white noise
 𝜀𝜀𝑡𝑡~ N(0, 𝜎𝜎2), E 𝜀𝜀𝑡𝑡𝜀𝜀𝑡𝑡′ = 0 for all t ≠ t′
 Explicitly check this assumption by 

 Comparing the empirical 𝜀𝜀𝑡𝑡 distribution to a Gaussian using common 
Kolmogorov-Smirnov or 𝜒𝜒2–based test statistics

 Evaluating whether any of the autocorrelations significantly deviates from 0 [or 
−1/T] for Δ𝑡𝑡 ≠ 0
o Moments up to 2nd order – completely specify a white noise process in general 

and the Gaussian in particular
 Alternatively evaluate whether the power spectrum conforms to a uniform 

distribution
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 White Noise
 Or employ more general tests for randomness in the time series by checking 

for any sort of sequential dependencies
 Discretize (bin) 𝜀𝜀𝑡𝑡, chart the transition frequencies among different bins, and compare 

them to the expected base rates under independence using 𝜒𝜒2 tables
 Also examine the binned series for unusually long runs of specific bin-values, based on 

the binomial or multinomial distribution
 Another possibility: 

 To chart the intervals btw successive maxima (or minima) of a real-valued series
 The length of an interval 𝐼𝐼𝑖𝑖 btw any two successive maxima – independent of the 

length 𝐼𝐼𝑖𝑖−1 of the previous interval for a pure random process: 𝑝𝑝 𝐼𝐼𝑖𝑖|𝐼𝐼𝑖𝑖−1 = 𝑝𝑝 𝐼𝐼𝑖𝑖
 Plotting all pairs (𝐼𝐼𝑖𝑖, 𝐼𝐼𝑖𝑖−1) (called “first-return plot”) & inspecting the graph for 

systematic trends in the distribution  a visual idea of whether this holds
 Durstewitz and Gabriel (2007) – used this to examine 

 Whether single neuron ISI series recorded under different pharmacological 
conditions exhibit any evidence of deterministic structure or

 Whether they are indeed largely random as suggested by the common Poisson 
assumption of neural spiking statistics 

 (more formally) A significant regression coefficient relating 𝐼𝐼𝑖𝑖 to 𝐼𝐼𝑖𝑖−1 doubt on the 
assumption of independence

 A number of different informal checks or formal tests in this context
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 Stationarity and Ergodicity
 Stationarity
 A fundamental concept (for model estimation and inference) in time series 

analysis
 Roughly means that properties of the time series do not change across time
 Weak sense versus strong stationarity
 Weak stationarity:

 Mean: constant & independent of time
 acov (acorr) function: a function of time lag only, but does not change 

with 𝑡𝑡 either
 Stronger form of stationarity: joint distribution F of 𝑥𝑥𝑡𝑡 – time-invariant 

 All higher-order moments of the 𝑥𝑥𝑡𝑡 distribution – independent of 𝑡𝑡 as 
well (equivalent to weak stationarity (a) for a purely Gaussian process)

(a)

(b)
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 Stationarity and Ergodicity
 Stationarity

 Assuming that we have access to a large sample of time series 𝑥𝑥𝑡𝑡 (𝑖𝑖) generated by the 
same underlying process  expectancies taken across all series 𝑖𝑖 at time 𝑡𝑡 to evaluate 
the 1st moments E𝑖𝑖 𝑥𝑥𝑡𝑡

(𝑖𝑖) = lim
𝑁𝑁→∞

∑𝑖𝑖=1𝑁𝑁 ⁄𝑥𝑥𝑡𝑡
(𝑖𝑖) 𝑁𝑁

 Thus, the definition does not exclude conditional dependence in the series: 
E 𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1 ≠ E 𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1′ for 𝑥𝑥𝑡𝑡−1 ≠ 𝑥𝑥𝑡𝑡−1′

 Central for identifying periodic (like harmonic oscillatory) processes as stationary
 𝑥𝑥𝑡𝑡 – may indeed systematically change across time
 A time series generated by the harmonic oscillatory process with noise:

o 𝜑𝜑𝑖𝑖: a r.v. across different realization 𝑥𝑥𝑡𝑡
(𝑖𝑖) of the process

o E 𝑥𝑥𝑡𝑡 = const for all 𝑡𝑡; consecutive values 𝑥𝑥𝑡𝑡 in time – conditionally 
dependent as defined through the sine function (the systematic part)
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 Stationarity and Ergodicity
 Ergodicity
 Often employed in access only to one realization of time series process
 Meaning that estimates across different independent realizations of the 

same process at fixed 𝑡𝑡 – replaced by estimates across time

 Mean: E𝑖𝑖 𝑥𝑥𝑡𝑡
(𝑖𝑖) = E𝑡𝑡 𝑥𝑥𝑖𝑖

(𝑡𝑡)

 Variance: E𝑖𝑖 𝑥𝑥𝑡𝑡
(𝑖𝑖) − �̅�𝑥𝑡𝑡

(𝑖𝑖) 2
= E𝑡𝑡 𝑥𝑥𝑖𝑖

(𝑡𝑡) − �̅�𝑥𝑖𝑖
(𝑡𝑡) 2

 The 1st expectation – taken across sample series 𝑖𝑖(fixed 𝑡𝑡); the 2nd

across time points 𝑡𝑡(fixed 𝑖𝑖)
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 Stationarity and Ergodicity
 Time series data – commonly not iid but governed by 

autocorrelations  not at all evident that such properties hold
 A sufficient condition for a stationary process to be ergodic in the mean: the 

autocorrelations die out to zero as the lag increases
 Autocorrelation – still affect the sampling distribution of a time series mean 
�̅�𝑥 estimated from a finite series of length T with its squared standard error:

 These autocorrelations an unbiased estimate of the standard error of �̅�𝑥
from a single time series 𝑥𝑥𝑡𝑡 (unlike the conventional iid case (= ⁄𝜎𝜎2 𝑇𝑇))

 A reflection of the more general issue: dealing with dependent data in 
time series  violating a crucial assumption of most conventional 
statistics
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 Stationarity and Ergodicity
 Another problem
 What we consider as stationary – depends on observation period T
 Something appearing nonstationary on short-time scales – may be stationary on 

longer scales (T: brief compared to the period of an underlying oscillation)
 Other ways of defining stationarity
 Stationary if the generating process has time-invariant parameters

 A process 𝑥𝑥𝑡𝑡 = 𝑓𝑓𝛉𝛉 𝑥𝑥𝑡𝑡−1 + 𝜀𝜀𝑡𝑡: the parameter set 𝛉𝛉 – constant 
 Not clear whether such a definition is generally consistent with (a) or (b)

 Dynamical systems with constant parameters
 May generate time series which potentially violate the above statistical 

definition of stationarity
o If the dynamical system possesses multiple coexisting attractor states 

characterized by different distributions among which it may hop d/t 
perturbations

 (vice versa) a process with time-varying parameters 𝛉𝛉 – still stationary according 
to defs (a) and (b)
 If the parameters at each point in time are themselves drawn from a stationary 

distribution
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 Stationarity and Ergodicity
 Experiments
 Different tests – proposed to directly check whether statistical moments of 

the time series stay within certain confidence limits across time
 Quiroga-Lombard et al. (2013)

 A formal test developed based on def. (a)
 First standardizes and transforms the observed quantities (interspike

intervals [ISI]) through the Box-Cox transform to bring their distribution 
into close agreement with a standard Gaussian

 Then checks within sliding windows of k consecutive variables whether 
the local average and standardized sum of squares fall outside predefined 
confidence bounds of the normal and 𝜒𝜒2-distribution estimated from the 
full series, respectively (Fig. 7.2)

 Ignores autocorrelations in the series (which often decay rapidly for ISI 
series in vivo)

 Durstewitz and Gabriel (2007)
 Kolmogorov-Smirnov tests – used to check whether distribution across a 

set of consecutive samples of ISI series significantly deviate from each 
other
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Fig. 7.2 Dissecting spike trains into stationary segments. (a) Running estimate of test statistic Tm,k comparing the 
local average to the grand average of the series on sliding windows of ten BoxCox-transformed interspike intervals 
(ISIs), with [2%, 98%] confidence bands. (b) Running estimate of χ2-distributed statistic Qm,k evaluating the 
variation of the local ISIs around the grand average, with [2%, 98%] confidence bands. (c) Original ISI series with 
resulting set of jointly stationary segments in gray shading. Reprinted from Quiroga-Lombard et al. (2013),
Copyright (2013) by The American Physiological Society, with permission
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 Stationarity and Ergodicity
 Non-stationarity – also recognized from the estimated coefficients of the model
 One obvious type of non-stationarity = a systematic trend across time

 Caution: a slow oscillation – may look like a trend on shorter-time scales
 Indicated by having a lot of power in the lowest frequency bands, or equivalently, having very long-

term autocorrelations
 At least three different ways of removing a systematic trend oscillations, or other forms of non-

stationarity and undesired confounds
1. A parametric, or nonparametric model fitted to the data (e.g., a linear regression model, a 
locally linear regression, or a spline model)  then work from the residuals after removing the 
trend, oscillation, or any other systematic component in the data that may spoil the process of 
interest
2. Designing a filter to take out the slowest frequency bands or any other prominent frequency 
band  remove trends or oscillations in the frequency domain
3. Differencing the time series as often as required

o A nonstationary time series 𝑥𝑥𝑡𝑡 – transformed into a stationary one by considering the 
series of 1st-order differences 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡

o Higher-order differencing – in some cases, required to make the series stationary
 Transformations of the data to stabilize the variance (e.g., a log-transform) or to move 

them toward a normal distribution (e.g., Box-Cox transforms)
 Sometimes also help
 Used carefully (∵potentially also lead to spurious phenomena (e.g., induce oscillations) or inflate 

the noise)
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